-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
5分钟了解GraphRAG和Mem0
一句话总结全文: GraphRAG是基于图+向量混合存储技术的RAG,Mem0是GraphRAG的一种实现,它的准确率比OpenAI Memory高26% ,延迟降低91%,并且节省了90%的Tokens,Mem0没有Java SDK但是提供了可供Java调用的Python Service,文章最后结合Mem0论文介绍了Mem0提升效率和节省Token的原理下期预告:大概是Java如何使用Mem0…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
技术总结之RAG用于文档信息抽取及多模态大模型两阶段训练范式
今天是2025年7月9日,星期三,北京,晴 我们来看几个问题,一个是AG竞赛总结及用于信息抽取的实现范式,看看目前怎么解。 另外,再看看大模型训练相关轮子指引,包括多模态大模型训练的两阶段范式以及其他头部模型的训练指引,东西越来越多,温故而知新。 最近的趋势:轮子与解决方案同质化之下,业务know-how更加为上。 一、RAG竞赛总结及用于信息抽取的实现范式 1、SIGIR 2025 LiveRA…- 0
- 0
-
AI大模型落地最后一公里:RAG?
对于一个旨在处理特定领域内容的专属智能体来说,其最终的生产力价值,几乎完全取决于其背后私有知识库的质量和处理水平。 尝试做过一些智能体,上传过私有文档,但召回质量都达不到预期,不停地尝试和踩坑,不同的平台不管是开源的还是在线的,上传pdf文档,提取文档,建立索引,然后提问,大模型返回的内容总是失望,经过N次尝试总是达不到预期的效果,根本原因都还是落到了RAG。 一、大型语言模型(LLM)与私有知识…- 0
- 0