一文彻底搞懂智能体Agent基于ReAct的工具调用


前言

AI智能体是指具备一定自主性、能感知环境并通过智能决策执行特定任务的软件或硬件实体。它结合了人工智能技术(如机器学习、自然语言处理、计算机视觉等),能够独立或协作完成目标。

基于大语言模型(LLM)的Function Calling可以令智能体实现有效的工具使用和与外部API的交互。支持Function Calling的模型(如gpt-4,qwen-plus等)能够检测何时需要调用函数,并输出调用函数的函数名和所需参数的JSON格式结构化数据。

但并非所有的LLM模型都支持Function Calling(如deepseel-v3)。对于不支持Function Calling的模型,可通过ReAct的相对较为复杂的提示词工程,要求模型返回特定格式的响应,以便区分不同的阶段(思考、行动、观察)。

工具调用主要有两个用途:

  • 获取数据:
     例如根据关键字从知识库检索内容、通过特定API接口获取业务数据
  • 执行行动:
     例如通过API接口修改业务状态数据、执行预定业务操作


本文包含如下内容:

  • ReAct基础
  • 详细介绍基于ReAct的工具调用流程和涉及的交互消息
  • 手搓Agent代码实现基于ReAct的工具调用

ReAct基础

ReAct源于经典论文: REACT: SYNERGIZING REASONING AND ACTING IN LANGUAGE MODELS (链接:https://arxiv.org/pdf/2210.03629)

基于ReAct的智能体为了解决问题,需要经过几个阶段

  • Thought: 思考推理
  • Action:作出行动,决定要调用的工具和参数
  • Observation:行动的结果(工具输出)


以上3个阶段可能迭代多次,直到问题得到解决或者达到迭代次数上限。

一文彻底搞懂智能体Agent基于ReAct的工具调用

基于ReAct的工具调用依赖于复杂的提示词工程。系统提示词参考langchain的模板:

Answer the following questions as best you can. You have access to the following tools:{tool_strings}
The way you use the tools is by specifying a json blob.Specifically, this json should have a `action` key (with the name of the tool to useand a `action_input` key (with the input to the tool going here).
The only values that should be in the "action" field are: {tool_names}
The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:
```{{{{"action": $TOOL_NAME,"action_input": $INPUT}}}}```
ALWAYS use the following format:
Question: the input question you must answerThought: you should always think about what to doAction:```$JSON_BLOB```Observation: the result of the action... (this Thought/Action/Observation can repeat N times)Thought: I now know the final answerFinal Answer: the final answer to the original input question
Begin! Reminder to always use the exact characters `Final Answer` when responding.


基于ReAct的工具调用流程和交互消息

我们以查询北京和广州天气为例,LLM采用阿里云的DeepSeek-v3。查询天气的流程如下图:

一文彻底搞懂智能体Agent基于ReAct的工具调用

1. 发起查询请求

向LLM发起查询时,messages列表有2条messages:

  • 第1条role为system,定义了系统提示词(含工具定义)
  • 第2条role为user,包含如下内容:
    • Question: 北京和广州天气怎么样


我们用curl发起POST请求,body的JSON结构可参考https://platform.openai.com/docs/api-reference/chat/create 。

请求里的stop字段需要设置为Observation:,否则LLM会直接输出整个Thought/Action/Observation流程并给出虚构的最终答案。我们仅需要LLM输出Thought/Action即可

#!/bin/bashexport OPENAI_BASE_URL="https://dashscope.aliyuncs.com/compatible-mode/v1"export OPENAI_API_KEY="sk-xxx" # 替换为你的key
curl ${OPENAI_BASE_URL}/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer $OPENAI_API_KEY" -d '{  "model""deepseek-v3",  "messages": [    {      "role""system",      "content""nAnswer the following questions as best you can. You have access to the following tools:n{"name""get_weather""description""Get weather""parameters": {"type""object""properties": {"location": {"type""string""description""the name of the location"}}, "required": ["location"]}}nnnThe way you use the tools is by specifying a json blob.nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).nnThe only values that should be in the "action" field are: get_weathernnThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:nn```n{{n"action": $TOOL_NAME,n"action_input": $INPUTn}}n```nnALWAYS use the following format:nnQuestion: the input question you must answernThought: you should always think about what to donAction:n```n$JSON_BLOBn```nObservation: the result of the actionn... (this Thought/Action/Observation can repeat N times)nThought: I now know the final answernFinal Answer: the final answer to the original input questionnnnBegin! Reminder to always use the exact characters `Final Answer` when responding. n"    },    {      "role""user",      "content""Question: 北京和广州天气怎么样nn"    }  ],  "stop""Observation:"}'

2. LLM返回Action获取北京天气

LLM经过推理,发现需要先调用函数获取北京天气。

Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。Action:```{  "action": "get_weather",  "action_input": {    "location": "北京"  }}```

完整的JSON响应如下:

{  "choices": [    {      "message": {        "content": "Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。nnAction:n```n{n  "action": "get_weather",n  "action_input": {n    "location": "北京"n  }n}n```",        "role": "assistant"      },      "finish_reason": "stop",      "index": 0,      "logprobs": null    }  ],  "object": "chat.completion",  "usage": {    "prompt_tokens": 305,    "completion_tokens": 49,    "total_tokens": 354  },  "created": 1745651748,  "system_fingerprint": null,  "model": "deepseek-v3",  "id": "chatcmpl-697b0627-4fca-975b-954c-7304386ac224"}

3. 处理函数调用获取北京天气

解析处理LLM的Action获得函数名和参数列表,调用相应的API接口获得结果。

例如:通过http://weather.cma.cn/api/now/54511可获得北京的天气情况。

完整的JSON响应如下:

{  "msg": "success",  "code": 0,  "data": {    "location": {      "id": "54511",      "name": "北京",      "path": "中国, 北京, 北京"    },    "now": {      "precipitation": 0.0,      "temperature": 23.4,      "pressure": 1005.0,      "humidity": 43.0,      "windDirection": "西南风",      "windDirectionDegree": 216.0,      "windSpeed": 2.7,      "windScale": "微风",      "feelst": 23.1    },    "alarm": [],    "jieQi": "",    "lastUpdate": "2025/04/26 15:00"  }}

4. 把上下文信息以及函数调用结果发给LLM

发给LLM的messages列表有2条messages:

  • 第1条role为system,定义了系统提示词(含工具定义)
  • 第2条role为user,包含如下内容:
    • Question: 北京和广州天气怎么样
    • Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气
    • Action: {"action":"get_weather","action_input":{"location":"北京"}}
    • Observation: 工具调用get_weather('北京')的结果
#!/bin/bashexport OPENAI_BASE_URL="https://dashscope.aliyuncs.com/compatible-mode/v1"export OPENAI_API_KEY="sk-xxx" # 替换为你的key
curl ${OPENAI_BASE_URL}/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer $OPENAI_API_KEY" -d '{  "model""deepseek-v3",  "messages": [    {      "role""system",      "content""nAnswer the following questions as best you can. You have access to the following tools:n{"name""get_weather""description""Get weather""parameters": {"type""object""properties": {"location": {"type""string""description""the name of the location"}}, "required": ["location"]}}nnnThe way you use the tools is by specifying a json blob.nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).nnThe only values that should be in the "action" field are: get_weathernnThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:nn```n{{n"action": $TOOL_NAME,n"action_input": $INPUTn}}n```nnALWAYS use the following format:nnQuestion: the input question you must answernThought: you should always think about what to donAction:n```n$JSON_BLOBn```nObservation: the result of the actionn... (this Thought/Action/Observation can repeat N times)nThought: I now know the final answernFinal Answer: the final answer to the original input questionnnnBegin! Reminder to always use the exact characters `Final Answer` when responding. n"    },    {      "role""user",      "content""Question: 北京和广州天气怎么样nnThought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。nnAction:n```n{n"action""get_weather",n"action_input": {n"location""北京"n}n}n```nObservation: {"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":23.4,"pressure":1005.0,"humidity":43.0,"windDirection":"西南风","windDirectionDegree":216.0,"windSpeed":2.7,"windScale":"微风","feelst":23.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}n"    }  ],  "stop""Observation:"}'

5. LLM返回Action获取广州天气

LLM经过推理,发现还需要调用函数获取广州天气。

Thought: 我已经获取了北京的天气信息。接下来,我将获取广州的天气信息。Action:```{  "action": "get_weather",  "action_input": {    "location": "广州"  }}```



完整的JSON响应如下:

{  "choices": [    {      "message": {        "content": "Thought: 我已经获取了北京的天气信息。接下来,我将获取广州的天气信息。nnAction:n```n{n"action": "get_weather",n"action_input": {n"location": "广州"n}n}n```nObservation",        "role": "assistant"      },      "finish_reason": "stop",      "index": 0,      "logprobs": null    }  ],  "object": "chat.completion",  "usage": {    "prompt_tokens": 472,    "completion_tokens": 46,    "total_tokens": 518  },  "created": 1745651861,  "system_fingerprint": null,  "model": "deepseek-v3",  "id": "chatcmpl-a822b8d7-9105-9dc2-8e98-4327afb50b3a"}

6. 处理函数调用获取广州天气

解析处理LLM的Action获得函数名和参数列表,调用相应的API接口获得结果。

例如:通过http://weather.cma.cn/api/now/59287可获得广州的天气情况。

完整的JSON响应如下:

{  "msg": "success",  "code": 0,  "data": {    "location": {      "id": "59287",      "name": "广州",      "path": "中国, 广东, 广州"    },    "now": {      "precipitation": 0.0,      "temperature": 24.2,      "pressure": 1005.0,      "humidity": 79.0,      "windDirection": "东北风",      "windDirectionDegree": 31.0,      "windSpeed": 1.3,      "windScale": "微风",      "feelst": 27.1    },    "alarm": [],    "jieQi": "",    "lastUpdate": "2025/04/26 15:00"  }}

7. 把上下文信息以及函数调用结果发给LLM

发给LLM的messages列表有2条messages:

  • 第1条role为system,定义了系统提示词(含工具定义)
  • 第2条role为user,包含如下内容:
    • Question: 北京和广州天气怎么样
    • Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气
    • Action: {"action":"get_weather","action_input":{"location":"北京"}}
    • Observation: 工具调用get_weather('北京')的结果
    • Thought: 现在我已经获取了北京的天气信息,接下来我将获取广州的天气信息。
    • Action: {"action":"get_weather","action_input":{"location":"广州"}}
    • Observation: 工具调用get_weather('广州')的结果
#!/bin/bashexport OPENAI_BASE_URL="https://dashscope.aliyuncs.com/compatible-mode/v1"export OPENAI_API_KEY="sk-xxx" # 替换为你的key
curl ${OPENAI_BASE_URL}/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer $OPENAI_API_KEY" -d '{  "model""deepseek-v3",  "messages": [    {      "role""system",      "content""nAnswer the following questions as best you can. You have access to the following tools:n{"name""get_weather""description""Get weather""parameters": {"type""object""properties": {"location": {"type""string""description""the name of the location"}}, "required": ["location"]}}nnnThe way you use the tools is by specifying a json blob.nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).nnThe only values that should be in the "action" field are: get_weathernnThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:nn```n{{n"action": $TOOL_NAME,n"action_input": $INPUTn}}n```nnALWAYS use the following format:nnQuestion: the input question you must answernThought: you should always think about what to donAction:n```n$JSON_BLOBn```nObservation: the result of the actionn... (this Thought/Action/Observation can repeat N times)nThought: I now know the final answernFinal Answer: the final answer to the original input questionnnnBegin! Reminder to always use the exact characters `Final Answer` when responding. n"    },    {      "role""user",      "content""Question: 北京和广州天气怎么样nnThought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。nnAction:n```n{n"action""get_weather",n"action_input": {n"location""北京"n}n}n```nObservation: {"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":23.4,"pressure":1005.0,"humidity":43.0,"windDirection":"西南风","windDirectionDegree":216.0,"windSpeed":2.7,"windScale":"微风","feelst":23.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}nThought: 现在我已经获取了北京的天气信息,接下来我将获取广州的天气信息。nnAction:n```n{n"action""get_weather",n"action_input": {n"location""广州"n}n}n```nObservationnObservation: {"msg":"success","code":0,"data":{"location":{"id":"59287","name":"广州","path":"中国, 广东, 广州"},"now":{"precipitation":0.0,"temperature":24.2,"pressure":1005.0,"humidity":79.0,"windDirection":"东北风","windDirectionDegree":31.0,"windSpeed":1.3,"windScale":"微风","feelst":27.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}n"    }  ],  "stop""Observation:"}'

8. LLM生成最终回复

LLM生成最终的回复:

Thought: 我已经获取了北京和广州的天气信息,现在可以回答用户的问题了。
Final Answer: 北京的天气温度为23.4°C,湿度为43%,风向为西南风,风速为2.7米/秒。广州 的天气温度为24.2°C,湿度为79%,风向为东北风,风速为1.3米/秒。



完整的JSON响应如下:

{  "choices": [    {      "message": {        "content": "Thought: 我已经获取了北京和广州的天气信息,现在可以回答用户的问题了。nnFinal Answer: 北京的天气温度为23.4°C,湿度为43%,风向为西南风,风速为2.7米/秒。广州 的天气温度为24.2°C,湿度为79%,风向为东北风,风速为1.3米/秒。",        "role": "assistant"      },      "finish_reason": "stop",      "index": 0,      "logprobs": null    }  ],  "object": "chat.completion",  "usage": {    "prompt_tokens": 641,    "completion_tokens": 79,    "total_tokens": 720  },  "created": 1745652025,  "system_fingerprint": null,  "model": "deepseek-v3",  "id": "chatcmpl-d9b85f31-589e-9c6f-8694-cf813344e464"}



手搓Agent代码实现基于ReAct的工具调用

1. 创建python环境

uv init agent
cd agent
uv venv
.venvScriptsactivate

uv add openai requests python-dotenv

2. 设置API Key

创建.env,.env内容如下(注意修改OPENAI_API_KEY为您的key)

OPENAI_API_KEY=your_api_key_here
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1

把.env添加到.gitignore

3. 实现Agent代码

基于openai sdk实现ReAct agent的伪代码主体逻辑如下:

maxIter = 5 # 最大迭代次数agent_scratchpad = "" # agent思考过程(Thought/Action/Observation)for iterSeq in range(1, maxIter+1):    构造chat completion请求        messages有2条            第1条为系统提示词消息(含工具定义)            第2条为用户消息:Question + agent思考过程(Thought/Action/Observation)        stop参数设置为"Observation:"    获取chat completion结果    如果chat completion结果带有"Final Answer:"        返回最终答案    如果chat completion结果带有Action        解析并调用相应函数        更新agent思考过程:把本次LLM的输出(Though/Action)和工具调用结果(Observation)添加到agent_scratchpad        继续迭代



完整的main.py代码如下:

import jsonimport reimport requestsimport urllib.parsefrom typing import Iterablefrom openai import OpenAIfrom openai.types.chat.chat_completion_message_param import ChatCompletionMessageParamfrom openai.types.chat.chat_completion_user_message_param import (    ChatCompletionUserMessageParam,)from openai.types.chat.chat_completion_system_message_param import (    ChatCompletionSystemMessageParam,)
# 加载环境变量from dotenv import load_dotenvload_dotenv()
client = OpenAI()model = "deepseek-v3"
# 工具定义tools = [    {        "type""function",        "function": {            "name""get_weather",            "description""Get weather",            "parameters": {                "type""object",                "properties": {                    "location": {"type""string""description""location"}                },                "required": ["location"],            },        },    }]
# 系统提示词def get_system_prompt():    tool_strings = "n".join([json.dumps(tool["function"]) for tool in tools])    tool_names = ", ".join([tool["function"]["name"for tool in tools])    systemPromptFormat = """Answer the following questions as best you can. You have access to the following tools:{tool_strings}

The way you use the tools is by specifying a json blob.Specifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).
The only values that should be in the "action" field are: {tool_names}
The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:
```{{{{"action": $TOOL_NAME,"action_input": $INPUT}}}}```
ALWAYS use the following format:
Question: the input question you must answerThought: you should always think about what to doAction:```$JSON_BLOB```Observation: the result of the action... (this Thought/Action/Observation can repeat N times)Thought: I now know the final answerFinal Answer: the final answer to the original input question

Begin! Reminder to always use the exact characters `Final Answer` when responding. """    return systemPromptFormat.format(tool_strings=tool_strings, tool_names=tool_names)
# 实现获取天气def get_weather(location: str) -> str:    url = "http://weather.cma.cn/api/autocomplete?q=" + urllib.parse.quote(location)    response = requests.get(url)    data = response.json()    if data["code"] != 0:        return "没找到该位置的信息"    location_code = ""    for item in data["data"]:        str_array = item.split("|")        if (            str_array[1] == location            or str_array[1] + "市" == location            or str_array[2] == location        ):            location_code = str_array[0]            break    if location_code == "":        return "没找到该位置的信息"    url = f"http://weather.cma.cn/api/now/{location_code}"    return requests.get(url).text
# 实现工具调用def invoke_tool(toolName: str, toolParamaters) -> str:    result = ""    if toolName == "get_weather":        result = get_weather(toolParamaters["location"])    else:        result = f"函数{toolName}未定义"    return result
def main():    query = "北京和广州天气怎么样"    systemMsg = ChatCompletionSystemMessageParam(        role="system", content=get_system_prompt()    )    maxIter = 5  # 最大迭代次数    agent_scratchpad = ""  # agent思考过程    action_pattern = re.compile(r"nAction:n`{3}(?:json)?n(.*?)`{3}.*?$", re.DOTALL)    for iterSeq in range(1, maxIter + 1):        messages: Iterable[ChatCompletionMessageParam] = list()        messages.append(systemMsg)        messages.append(            ChatCompletionUserMessageParam(                role="user", content=f"Question: {query}nn{agent_scratchpad}"            )        )        print(f">> iterSeq:{iterSeq}")        print(f">>> messages: {json.dumps(messages)}")        # 向LLM发起请求,注意需要设置stop参数        chat_completion = client.chat.completions.create(            messages=messages,            model=model,            stop="Observation:",        )        content = chat_completion.choices[0].message.content        print(f">>> content:n{content}")        final_answer_match = re.search(r"nFinal Answer:s*(.*)", content)        if final_answer_match:            final_answer = final_answer_match.group(1)            print(f">>> 最终答案: {final_answer}")            return        action_match = action_pattern.search(content)        if action_match:            obj = json.loads(action_match.group(1))            toolName = obj["action"]            toolParameters = obj["action_input"]            print(f">>> tool name:{toolName}")            print(f">>> tool parameters:{toolParameters}")            result = invoke_tool(toolName, toolParameters)            print(f">>> tool result: {result}")            # 把本次LLM的输出(Though/Action)和工具调用结果(Observation)添加到agent_scratchpad            agent_scratchpad += content + f"nObservation: {result}n"        else:            print(">>> ERROR: detect invalid response")            return    print(">>> 迭代次数达到上限,我无法得到最终答案")
main()



运行代码:uv run .main.py

输出日志如下:
>> iterSeq:1>>> messages: [{"role""system""content""nAnswer the following questions as best you can. You have access to the following tools:n{"name""get_weather""description""Get weather""parameters": {"type""object""properties": {"location": {"type""string""description""the name of the location"}}, "required": ["location"]}}nnnThe way you use the tools is by specifying a json blob.nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).nnThe only values that should be in the "action" field are: get_weathernnThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:nn```n{{n"action": $TOOL_NAME,n"action_input": $INPUTn}}n```nnALWAYS use the following format:nnQuestion: the input question you must answernThought: you should always think about what to donAction:n```n$JSON_BLOBn```nObservation: the result of the actionn... (this Thought/Action/Observation can repeat N times)nThought: I now know the final answernFinal Answer: the final answer to the original input questionnnnBegin! Reminder to always use the exact characters `Final Answer` when responding. n"}, {"role""user""content""Question: u5317u4eacu548cu5e7fu5ddeu5929u6c14u600eu4e48u6837nn"}]>>> content:Thought: 我需要获取北京和广州的天气信息首先,我将获取北京的天气
Action:```{"action""get_weather","action_input": {"location""北京"}}```>>> tool name:get_weather>>> tool parameters:{'location': '北京'}>>> tool result: {"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":23.4,"pressure":1005.0,"humidity":43.0,"windDirection":"西南风","windDirectionDegree":216.0,"windSpeed":2.7,"windScale":"微风","feelst":23.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}>> iterSeq:2>>> messages: [{"role""system""content""nAnswer the following questions as best you can. You have access to the following tools:n{"name""get_weather""description""Get weather""parameters": {"type""object""properties": {"location": {"type""string""description""the name of the location"}}, "required": ["location"]}}nnnThe way you use the tools is by specifying a json blob.nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).nnThe only values that should be in the "action" field are: get_weathernnThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:nn```n{{n"action": $TOOL_NAME,n"action_input": $INPUTn}}n```nnALWAYS use the following format:nnQuestion: the input question you must answernThought: you should always think about what to donAction:n```n$JSON_BLOBn```nObservation: the result of the actionn... (this Thought/Action/Observation can repeat N times)nThought: I now know the final answernFinal Answer: the final answer to the original input questionnnnBegin! Reminder to always use the exact characters `Final Answer` when responding. n"}, {"role""user""content""Question: u5317u4eacu548cu5e7fu5ddeu5929u6c14u600eu4e48u6837nnThought: u6211u9700u8981u83b7u53d6u5317u4eacu548cu5e7fu5ddeu7684u5929u6c14u4fe1u606fu3002u9996u5148uff0cu6211u5c06u83b7u53d6u5317u4eacu7684u5929u6c14u3002nnAction:n```n{n"action""get_weather",n"action_input": {n"location""u5317u4eac"n}n}n```nObservation: {"msg":"success","code":0,"data":{"location":{"id":"54511","name":"u5317u4eac","path":"u4e2du56fd, u5317u4eac, u5317u4eac"},"now":{"precipitation":0.0,"temperature":23.4,"pressure":1005.0,"humidity":43.0,"windDirection":"u897fu5357u98ce","windDirectionDegree":216.0,"windSpeed":2.7,"windScale":"u5faeu98ce","feelst":23.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}n"}]>>> content:Thought: 现在我已经获取了北京的天气信息,接下来我将获取广州的天气信息
Action:```{"action""get_weather","action_input": {"location""广州"}}```Observation>>> tool name:get_weather>>> tool parameters:{'location': '广州'}>>> tool result: {"msg":"success","code":0,"data":{"location":{"id":"59287","name":"广州","path":"中国, 广东, 广州"},"now":{"precipitation":0.0,"temperature":24.2,"pressure":1005.0,"humidity":79.0,"windDirection":"东北风","windDirectionDegree":31.0,"windSpeed":1.3,"windScale":"微风","feelst":27.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}>> iterSeq:3>>> messages: [{"role""system""content""nAnswer the following questions as best you can. You have access to the following tools:n{"name""get_weather""description""Get weather""parameters": {"type""object""properties": {"location": {"type""string""description""the name of the location"}}, "required": ["location"]}}nnnThe way you use the tools is by specifying a json blob.nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).nnThe only values that should be in the "action" field are: get_weathernnThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:nn```n{{n"action": $TOOL_NAME,n"action_input": $INPUTn}}n```nnALWAYS use the following format:nnQuestion: the input question you must answernThought: you should always think about what to donAction:n```n$JSON_BLOBn```nObservation: the result of the actionn... (this Thought/Action/Observation can repeat N times)nThought: I now know the final answernFinal Answer: the final answer to the original input questionnnnBegin! Reminder to always use the exact characters `Final Answer` when responding. n"}, {"role""user""content""Question: u5317u4eacu548cu5e7fu5ddeu5929u6c14u600eu4e48u6837nnThought: u6211u9700u8981u83b7u53d6u5317u4eacu548cu5e7fu5ddeu7684u5929u6c14u4fe1u606fu3002u9996u5148uff0cu6211u5c06u83b7u53d6u5317u4eacu7684u5929u6c14u3002nnAction:n```n{n"action""get_weather",n"action_input": {n"location""u5317u4eac"n}n}n```nObservation: {"msg":"success","code":0,"data":{"location":{"id":"54511","name":"u5317u4eac","path":"u4e2du56fd, u5317u4eac, u5317u4eac"},"now":{"precipitation":0.0,"temperature":23.4,"pressure":1005.0,"humidity":43.0,"windDirection":"u897fu5357u98ce","windDirectionDegree":216.0,"windSpeed":2.7,"windScale":"u5faeu98ce","feelst":23.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}nThought: u73b0u5728u6211u5df2u7ecfu83b7u53d6u4e86u5317u4eacu7684u5929u6c14u4fe1u606fuff0cu63a5u4e0bu6765u6211u5c06u83b7u53d6u5e7fu5ddeu7684u5929u6c14u4fe1u606fu3002nnAction:n```n{n"action""get_weather",n"action_input": {n"location""u5e7fu5dde"n}n}n```nObservationnObservation: {"msg":"success","code":0,"data":{"location":{"id":"59287","name":"u5e7fu5dde","path":"u4e2du56fd, u5e7fu4e1c, u5e7fu5dde"},"now":{"precipitation":0.0,"temperature":24.2,"pressure":1005.0,"humidity":79.0,"windDirection":"u4e1cu5317u98ce","windDirectionDegree":31.0,"windSpeed":1.3,"windScale":"u5faeu98ce","feelst":27.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}n"}]>>> content:Thought: 我已经获取了北京和广州的天气信息,现在可以回答用户的问题了
Final Answer: 北京的天气情况为:温度23.4°C,湿度43%,西南风,风速2.7/秒,微风。广州的天气情况为:温度24.2°C,湿度79%,东北风,风速1.3米/秒,微风>>> 最终答案: 北京的天气情况为:温度23.4°C,湿度43%,西南风,风速2.7/秒,微风。广州的天气情况为:温度24.2°C,湿度79%,东北风,风速1.3米/秒,微风

总结

基于Function Calling和基于ReAct的工具调用有各自的优缺点:

1. Function Calling

  • 无需设定系统提示词,LLM根据tools定义即可触发工具调用,token消耗较少
  • 模型参数量相对较大。模型的训练数据必须包含Function Calling相关的内容,以确保模型能够理解和生成结构化输出,结构化输出更稳定
  • 输出结果较为容易处理
  • 隐藏了推理过程,缺乏可解释性

2. ReAct

  • 需要设置复杂的系统提示词,token消耗较多
  • 对模型参数要求较低
  • 输出结果处理比Function Calling复杂
  • 推理过程可见,更高的可解释性

END

前沿技术大模型技术新闻资讯

Cursor要凉?OpenAI发布的Codex让我彻底躺平了!

2025-5-18 18:38:30

前沿技术多模态技术新闻资讯

多模态 GraphRAG 初探:文档智能+知识图谱+大模型结合范式

2025-5-18 19:25:14

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
购物车
优惠劵
搜索