-
动态数据太折磨人!静态RAG搞不定,就试下ZEP,让Agent调用实时知识图谱。
您是否遇到过这样的困扰:明明搭建了完善的RAG系统,但Agent总是回答过时的信息,或者面对历史偏好变化时一脸茫然? 三个月前说喜欢激进投资策略,两周前改口要稳健配置,今天又想尝试新兴市场,传统RAG系统只能茫然地检索文档片段,根本无法理解这种动态演进。 这不是您的系统有问题,而是静态RAG天生的局限性在作祟。 传统RAG在动态场景下水土不服 静态文档检索的三大死穴 传统RAG系统本质上是一个…- 0
- 0
-
关于AI Agent产品管理的一些思考
关于Agent产品管理的 一些思考如下 【思考1】 在用户的复杂需求与单一底层AI模型的能力之间,始终存在着巨大的认知鸿沟(Gap),和表达方式上的鸿沟。让模型理解人的意图,以及让用户理解模型的工作机制,其实并不是一件容易的事情。 【思考2】 Agent,作为用户与模型间的中介,其价值正是填补并管理这个动态变化的鸿沟。 【思考3】好的Agent的基础,源于深刻的用户意图洞察、管理思想、以及对AI…- 0
- 0
-
AI PC新突破 端侧首次支持128K上下文窗口 实现2.2倍推理优化
点击蓝字关注我们,让开发变得更有趣面壁智能正式发布并开源了「面壁小钢炮」端侧系列最新力作——MiniCPM 4.0 模型,实现了端侧可落地的系统级软硬件稀疏化的高效创新。英特尔与面壁智能从模型开发阶段就紧密合作,实现了长短文本多重推理效率的提升,端侧AI PC在Day 0全面适配,128K长上下文窗口等多方面突破。 双方开展了深度技术协同,基于英特尔硬件架构定制投机解码配置。通过硬件感知的草稿模型…- 0
- 0
-
如何看待qwen3-Embedding模型
字数 991,阅读大约需 5 分钟 rag的时候,Embedding如何选,一般情况都是能力+成本的综合评估,我一般选择,看排行榜(重点关注的哪项能力),然后再看部署成本。一般看mteb的评估即可。https://huggingface.co/spaces/mteb/leaderboard MTEB 评估(Massive Text Embedding Benchmark) 这是目前最权威、最广…- 0
- 0
-
RAG 还是微调?大模型落地选型指南
点击上方蓝字关注我们越来越多的软件测试人员开始关注如何将 LLM(大语言模型)融入测试工作流。但当我们真正想“动手”时,常常会站在一个岔路口:到底该选择 RAG(检索增强生成)框架,还是直接做微调(fine-tuning)? 这就像是在改造一辆老旧汽车时的两种方式:一种是加装一个超智能导航系统(RAG),依靠外部的地图来快速响应各种路线变化;另一种是更换整个引擎(微调),让它从底层具备更强的自适应…- 0
- 0
-
读完ChatGPT o3最新的三万字系统提示词,我发现AI正在进化为真正的智能体
刚刚看完ChatGPT o3模型的系统提示词,超超超超长,近3万字。(完整提示词见下文) 非常像一本细致的技术手册,从边界到细节都写得非常清楚。 MUST 和 NEVER 这样的指令,为每个行为设定了明确的约束。 它把工具分成了 python 和 python_user_visible,一类负责模型自己的内部推演,一类专门用于对用户可见的公开输出。 cite 这样的语法设计,有点像工程师们的小暗号…- 0
- 0
-
提升AI问答准确率:请在RAG前先做RAR,超越意图识别
在RAG(检索增强生成)落地的过程中,存在一个效果显著,却常被忽视的技术方法 —— RAR RAR:推理增强检索(Reasoning-Augmented Retrieval) R(检索)与G(生成):谁才是胜负手从搜索引擎到智能助手,从笔记工具到AI知识库,输入框背后几乎都依赖RAG技术。当大模型让“生成”能力在聚光灯下闪耀发光时,我们往往低估了“检索”的决定性作用。尤其在当前大模型能力唾手可得的…- 0
- 0
-
🧠 解码大语言模型的记忆力:上下文长度的前世今生
在与ChatGPT、Claude等大语言模型对话时,你是否好奇:它们是如何记住我们之前的对话内容的?为什么有时它们能记住很长的对话,有时却会"失忆"?今天,我们就来深入浅出地剖析大语言模型中的一个关键概念——上下文长度(Context Length)。上下文长度是什么?想象你正在和一个朋友聊天。这个朋友有一个特殊的能力:他能记住你们之间交流的最后N个字。如果你们的对话超过了N个…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 1
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 1
- 0
-
🧠 解码大语言模型的记忆力:上下文长度的前世今生
在与ChatGPT、Claude等大语言模型对话时,你是否好奇:它们是如何记住我们之前的对话内容的?为什么有时它们能记住很长的对话,有时却会"失忆"?今天,我们就来深入浅出地剖析大语言模型中的一个关键概念——上下文长度(Context Length)。上下文长度是什么?想象你正在和一个朋友聊天。这个朋友有一个特殊的能力:他能记住你们之间交流的最后N个字。如果你们的对话超过了N个…- 1
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
🧠 解码大语言模型的记忆力:上下文长度的前世今生
在与ChatGPT、Claude等大语言模型对话时,你是否好奇:它们是如何记住我们之前的对话内容的?为什么有时它们能记住很长的对话,有时却会"失忆"?今天,我们就来深入浅出地剖析大语言模型中的一个关键概念——上下文长度(Context Length)。上下文长度是什么?想象你正在和一个朋友聊天。这个朋友有一个特殊的能力:他能记住你们之间交流的最后N个字。如果你们的对话超过了N个…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 1
- 0
-
🧠 解码大语言模型的记忆力:上下文长度的前世今生
在与ChatGPT、Claude等大语言模型对话时,你是否好奇:它们是如何记住我们之前的对话内容的?为什么有时它们能记住很长的对话,有时却会"失忆"?今天,我们就来深入浅出地剖析大语言模型中的一个关键概念——上下文长度(Context Length)。上下文长度是什么?想象你正在和一个朋友聊天。这个朋友有一个特殊的能力:他能记住你们之间交流的最后N个字。如果你们的对话超过了N个…- 1
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
🧠 解码大语言模型的记忆力:上下文长度的前世今生
在与ChatGPT、Claude等大语言模型对话时,你是否好奇:它们是如何记住我们之前的对话内容的?为什么有时它们能记住很长的对话,有时却会"失忆"?今天,我们就来深入浅出地剖析大语言模型中的一个关键概念——上下文长度(Context Length)。上下文长度是什么?想象你正在和一个朋友聊天。这个朋友有一个特殊的能力:他能记住你们之间交流的最后N个字。如果你们的对话超过了N个…- 0
- 0
-
🧠 解码大语言模型的记忆力:上下文长度的前世今生
在与ChatGPT、Claude等大语言模型对话时,你是否好奇:它们是如何记住我们之前的对话内容的?为什么有时它们能记住很长的对话,有时却会"失忆"?今天,我们就来深入浅出地剖析大语言模型中的一个关键概念——上下文长度(Context Length)。上下文长度是什么?想象你正在和一个朋友聊天。这个朋友有一个特殊的能力:他能记住你们之间交流的最后N个字。如果你们的对话超过了N个…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 0
- 0
-
从基础开始,先理解 AI 是什么(上篇)
点击蓝字 关注我们你是不是也有这种困惑: “什么是 LLM,跟多模态一样吗?” “多模态是指多模多样的模式?” “AGI 好像听过,但到底和现在的 AI 有什么关系?” “AI 都能画画写文案了,它到底是怎么做到的?” 如果你对这些词“似懂非懂”,别担心。这不是你的问题,是这个行业太爱用缩写词和技术词了。 今天,我们就从最底层出发,用普通人的语言,把 AI 的“底子”讲清楚。 01AI 是个“大家…- 0
- 0
-
Chonkie:开源、轻量、极速的 RAG 分块神器 🦛
在不断扩展的大模型上下文里,分块不仅是技术需求,更是确保模型效率的关键手段。然而,面对大部分冗杂的分块工具,不少开发者需要更直接、更有效的解决方案。这时,Chonkie — 一款专为分块任务设计的轻量工具 — 应运而生,成为了 RAG 应用开发中的绝佳帮手。为什么需要分块?随着语言模型能够处理的上下文不断增加,在提供丰富上下文的同时也带来了计算速度与内存开销的挑战。通过分块,…- 1
- 0
-
🧠 解码大语言模型的记忆力:上下文长度的前世今生
在与ChatGPT、Claude等大语言模型对话时,你是否好奇:它们是如何记住我们之前的对话内容的?为什么有时它们能记住很长的对话,有时却会"失忆"?今天,我们就来深入浅出地剖析大语言模型中的一个关键概念——上下文长度(Context Length)。上下文长度是什么?想象你正在和一个朋友聊天。这个朋友有一个特殊的能力:他能记住你们之间交流的最后N个字。如果你们的对话超过了N个…- 0
- 0
❯
购物车
优惠劵
搜索
扫码打开当前页
联系我们
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
-
¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!