前言
AI智能体是指具备一定自主性、能感知环境并通过智能决策执行特定任务的软件或硬件实体。它结合了人工智能技术(如机器学习、自然语言处理、计算机视觉等),能够独立或协作完成目标。基于大语言模型(LLM)的Function Calling可以令智能体实现有效的工具使用和与外部API的交互。
并非所有的LLM模型都支持Function Calling。支持Function Calling的模型(如gpt-4,qwen-plus等)能够检测何时需要调用函数,并输出调用函数的函数名和所需参数的JSON格式结构化数据。
Function Calling提高了输出稳定性,并简化了提示工程的复杂程度。对于不支持Function Calling的模型,可通过ReACT的相对较为复杂的提示词工程,要求模型返回特定格式的响应,以便区分不同的阶段(思考、行动、观察)。
Function Calling主要有两个用途:
-
获取数据:例如根据关键字从知识库检索内容、通过特定API接口获取业务数据 -
执行行动:例如通过API接口修改业务状态数据、执行预定业务操作
本文包含如下内容:
-
详细介绍Function Calling工具调用流程和涉及的交互消息 -
手搓Agent代码实现Function Calling工具调用
Function Calling工具调用流程和交互消息
我们以查询北京和广州天气为例,LLM采用通义千问qwen-plus
。查询天气的流程如下图:

1. 发起查询请求
向LLM发起查询时,messages列表只有一条消息(role为user, content为用户查询内容)。另外,还需要带上tools定义。
tools定义包含如下内容:
-
name: 函数名 -
description: 函数描述 -
parameters: 参数定义
本例中,定义了函数get_weather(location)
。
我们用curl发起POST请求,body的JSON结构可参考https://platform.openai.com/docs/api-reference/chat/create
#!/bin/bash
export OPENAI_API_BASE="https://dashscope.aliyuncs.com/compatible-mode/v1"
export OPENAI_API_KEY="sk-xxx"# 替换为你的key
curl ${OPENAI_API_BASE}/chat/completions
-H"Content-Type: application/json"
-H"Authorization: Bearer $OPENAI_API_KEY"
-d'{
"model": "qwen-plus",
"messages": [
{
"role": "user",
"content": "北京和广州天气怎么样"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "location"
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'2. LLM返回tool_calls获取北京天气
LLM经过推理,发现需要调用函数获取北京天气,回复的消息带上tool_calls信息。
本例中,需要调用函数
get_weather
,参数名为location
, 参数值为北京
。完整的JSON响应如下:
{ "choices": [ { "message": { "content": "", "role": "assistant", "tool_calls": [ { "index": 0, "id": "call_3ee91e7e0e0b420d811165", "type": "function", "function": { "name": "get_weather", "arguments": "{"location": "北京"}" } } ] }, "finish_reason": "tool_calls", "index": 0, "logprobs": null } ], "object": "chat.completion", "usage": { "prompt_tokens": 166, "completion_tokens": 17, "total_tokens": 183, "prompt_tokens_details": { "cached_tokens": 0 } }, "created": 1745131660, "system_fingerprint": null, "model": "qwen-plus", "id": "chatcmpl-7c4fc4c8-92fa-90cc-aaf6-f673d7ab4220" } 3. 处理函数调用获取北京天气
解析处理LLM的tool_calls获得函数名和参数列表,调用相应的API接口获得结果。
例如:通过
http://weather.cma.cn/api/now/54511
可获得北京的天气情况。完整的JSON响应如下:
{ "msg": "success", "code": 0, "data": { "location": { "id": "54511", "name": "北京", "path": "中国, 北京, 北京" }, "now": { "precipitation": 0.0, "temperature": 24.3, "pressure": 1007.0, "humidity": 35.0, "windDirection": "西南风", "windDirectionDegree": 207.0, "windSpeed": 2.7, "windScale": "微风" }, "alarm": [], "lastUpdate": "2025/04/20 14:25" } } 4. 把上下文信息以及函数调用结果发给LLM
发给LLM的messages列表有3条messages:
-
第1条role为 user
,是用户的输入 -
第2条role为 assistant
,是LLM的tool_calls响应get_weather('北京')
-
第3条role为 tool
,是工具调用get_weather('北京')
的结果
#!/bin/bash
export OPENAI_API_BASE="https://dashscope.aliyuncs.com/compatible-mode/v1"
export OPENAI_API_KEY="sk-xxx"# 替换为你的key
curl ${OPENAI_API_BASE}/chat/completions
-H"Content-Type: application/json"
-H"Authorization: Bearer $OPENAI_API_KEY"
-d'{
"model": "qwen-plus",
"messages": [
{
"role": "user",
"content": "北京和广州天气怎么样"
},
{
"role": "assistant",
"tool_calls": [
{
"id": "call_3ee91e7e0e0b420d811165",
"type": "function",
"function": {
"name": "get_weather",
"arguments": "{"location": "北京"}"
}
}
]
},
{
"role": "tool",
"content": "{"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":24.3,"pressure":1007.0,"humidity":35.0,"windDirection":"西南风","windDirectionDegree":207.0,"windSpeed":2.7,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 14:25"}}",
"tool_call_id": "call_3ee91e7e0e0b420d811165"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "location"
}
},
"required": [
"location"
]
}
}
}
],
"tool_choice": "auto"
}'5. LLM返回tool_calls获取广州天气
LLM经过推理,发现需要调用函数获取广州天气,回复的消息带上tool_calls信息。
本例中,需要调用函数
get_weather
,参数名为location
, 参数值为广州
。完整的JSON响应如下:
{ "choices": [ { "message": { "content": "", "role": "assistant", "tool_calls": [ { "index": 0, "id": "call_4a920a1bb9d54f8894c1ac", "type": "function", "function": { "name": "get_weather", "arguments": "{"location": "广州"}" } } ] }, "finish_reason": "tool_calls", "index": 0, "logprobs": null } ], "object": "chat.completion", "usage": { "prompt_tokens": 312, "completion_tokens": 19, "total_tokens": 331, "prompt_tokens_details": { "cached_tokens": 0 } }, "created": 1745132731, "system_fingerprint": null, "model": "qwen-plus", "id": "chatcmpl-5e002b5b-7220-927e-9637-554355f80658" } 6. 处理函数调用获取广州天气
解析处理LLM的tool_calls获得函数名和参数列表,调用相应的API接口获得结果。
例如:通过
http://weather.cma.cn/api/now/59287
可获得广州的天气情况。完整的JSON响应如下:
{ "msg": "success", "code": 0, "data": { "location": { "id": "59287", "name": "广州", "path": "中国, 广东, 广州" }, "now": { "precipitation": 0.0, "temperature": 30.1, "pressure": 1002.0, "humidity": 64.0, "windDirection": "东南风", "windDirectionDegree": 167.0, "windSpeed": 2.4, "windScale": "微风" }, "alarm": [], "lastUpdate": "2025/04/20 14:25" } } 7. 把上下文信息以及函数调用结果发给LLM
发给LLM的messages列表有5条messages:
-
第1条role为 user
,是用户的输入 -
第2条role为 assistant
,是LLM的tool_calls响应get_weather('北京')
-
第3条role为 tool
,是工具调用get_weather('北京')
的结果 -
第4条role为 assistant
,是LLM的tool_calls响应get_weather('广州')
-
第5条role为 tool
,是工具调用get_weather('广州')
的结果
#!/bin/bash
export OPENAI_API_BASE="https://dashscope.aliyuncs.com/compatible-mode/v1"
export OPENAI_API_KEY="sk-xxx"# 替换为你的key
curl ${OPENAI_API_BASE}/chat/completions
-H"Content-Type: application/json"
-H"Authorization: Bearer $OPENAI_API_KEY"
-d'{
"model": "qwen-plus",
"messages": [
{
"role": "user",
"content": "北京和广州天气怎么样"
},
{
"role": "assistant",
"tool_calls": [
{
"id": "call_3ee91e7e0e0b420d811165",
"type": "function",
"function": {
"name": "get_weather",
"arguments": "{"location": "北京"}"
}
}
]
},
{
"role": "tool",
"content": "{"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":24.3,"pressure":1007.0,"humidity":35.0,"windDirection":"西南风","windDirectionDegree":207.0,"windSpeed":2.7,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 14:25"}}",
"tool_call_id": "call_3ee91e7e0e0b420d811165"
},
{
"role": "assistant",
"tool_calls": [
{
"id": "call_4a920a1bb9d54f8894c1ac",
"type": "function",
"function": {
"name": "get_weather",
"arguments": "{"location": "广州"}"
}
}
]
},
{
"role": "tool",
"content": "{"msg":"success","code":0,"data":{"location":{"id":"59287","name":"广州","path":"中国, 广东, 广州"},"now":{"precipitation":0.0,"temperature":30.1,"pressure":1002.0,"humidity":64.0,"windDirection":"东南风","windDirectionDegree":167.0,"windSpeed":2.4,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 14:25"}}",
"tool_call_id": "call_4a920a1bb9d54f8894c1ac"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "location"
}
},
"required": [
"location"
]
}
}
}
],
"tool_choice": "auto"
}'8. LLM生成最终回复
LLM生成最终的回复:
北京的当前天气状况如下:
- 温度:24.3℃
- 湿度:35%
- 风向:西南风
- 风速:微风
广州的当前天气状况如下:
- 温度:30.1℃
- 湿度:64%
- 风向:东南风
- 风速:微风
以上信息均来自最近更新,希望对你有帮助!完整的JSON响应如下:
{ "choices": [ { "message": { "content": "北京的当前天气状况如下:n- 温度:24.3℃n- 湿度:35%n- 风向:西南风n- 风速:微风nn广州的当前天气状况如下:n- 温度:30.1℃n- 湿度:64%n- 风向:东南风n- 风速:微风 nn以上信息均来自最近更新,希望对你有帮助!", "role": "assistant" }, "finish_reason": "stop", "index": 0, "logprobs": null } ], "object": "chat.completion", "usage": { "prompt_tokens": 460, "completion_tokens": 105, "total_tokens": 565, "prompt_tokens_details": { "cached_tokens": 0 } }, "created": 1745133460, "system_fingerprint": null, "model": "qwen-plus", "id": "chatcmpl-fd1edc89-3ddb-9e27-9029-d2be2c81f3c1" } 手搓Agent代码实现Function Calling工具调用
1. 创建python环境
uv init agent
cd agent
uv venv
.venvScriptsactivate
uv add openai requests python-dotenv2. 设置API Key
创建.env,.env内容如下(注意修改OPENAI_API_KEY为您的key)
OPENAI_API_KEY=your_api_key_here
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1把.env添加到.gitignore
3. 实现Agent代码
基于openai sdk实现agent的主体代码逻辑是:在允许的迭代次数范围内,循环处理,发起chat completions直至没有tool_calls, 迭代结束,输出结果。
伪代码:
maxIter = 5 # 最大迭代次数 for iterSeq in range(1, maxIter+1): 构造chat completion请求(带tools列表和tool_choice) 迭代次数达到最大值,tool_choice设置为none(不再调用工具) 否则tool_choice设置为auto(根据需要调用工具) 获取chat completion结果 如果chat completion结果带有tool_calls 解析并调用相应函数 添加消息到消息列表,继续迭代 否则,表明无需调用工具,迭代结束,输出结果 完整的main.py代码如下:
import json import os import requests import urllib.parse from typing import Iterable from openai import OpenAI from openai.types.chat.chat_completion_message_param import ChatCompletionMessageParam from openai.types.chat.chat_completion_message_tool_call import ( ChatCompletionMessageToolCall, ) from openai.types.chat.chat_completion_user_message_param import ( ChatCompletionUserMessageParam, ) from openai.types.chat.chat_completion_tool_message_param import ( ChatCompletionToolMessageParam, ) from openai.types.chat.chat_completion_assistant_message_param import ( ChatCompletionAssistantMessageParam, ) # 加载环境变量 from dotenv import load_dotenv load_dotenv() api_key = os.getenv("OPENAI_API_KEY") base_url = os.getenv("OPENAI_API_BASE") model = "qwen-plus" client = OpenAI(api_key=api_key, base_url=base_url) # 工具定义 tools = [ { "type": "function", "function": { "name": "get_weather", "description": "Get weather", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "location"} }, "required": ["location"], }, }, } ] # 实现获取天气 def get_weather(location: str) -> str: url = "http://weather.cma.cn/api/autocomplete?q=" + urllib.parse.quote(location) response = requests.get(url) data = response.json() if data["code"] != 0: return "没找到该位置的信息" location_code = "" for item in data["data"]: str_array = item.split("|") if ( str_array[1] == location or str_array[1] + "市" == location or str_array[2] == location ): location_code = str_array[0] break if location_code == "": return "没找到该位置的信息" url = f"http://weather.cma.cn/api/now/{location_code}" return requests.get(url).text # 实现工具调用 def invoke_tool( tool_call: ChatCompletionMessageToolCall, ) -> ChatCompletionToolMessageParam: result = ChatCompletionToolMessageParam(role="tool", tool_call_id=tool_call.id) if tool_call.function.name == "get_weather": args = json.loads(tool_call.function.arguments) result["content"] = get_weather(args["location"]) else: result["content"] = "函数未定义" return result def main(): query = "北京和广州天气怎么样" messages: Iterable[ChatCompletionMessageParam] = list() messages.append(ChatCompletionUserMessageParam(role="user", content=query)) maxIter = 5 # 最大迭代次数 for iterSeq in range(1, maxIter+1): print(f">> iterSeq:{iterSeq}") print(f">>> messages: {messages}") # 当迭代次数达到最大值,不再调用工具 toolChoice = "auto" if iterSeq < maxIter else "none" # 向LLM发起请求 chat_completion = client.chat.completions.create( messages=messages, model=model, tools=tools, tool_choice=toolChoice ) tool_calls = chat_completion.choices[0].message.tool_calls content = chat_completion.choices[0].message.content if isinstance(tool_calls, list): # LLM的响应信息有tool_calls信息 messages.append( ChatCompletionAssistantMessageParam( role="assistant", tool_calls=tool_calls, content="" ) ) for tool_call in tool_calls: print(f">>> tool_call: {tool_call}") result = invoke_tool(tool_call) print(f">>> tool_call result: {result}") messages.append(result) else: # LLM的响应信息没有tool_calls信息,迭代结束,获取响应文本 print(f">>> final result: n{content}") return main() 运行代码:
uv run .main.py
输出日志如下:
>> iterSeq:1
>>> messages: [{'role': 'user', 'content': '北京和广州天气怎么样'}]
>>> tool_call: ChatCompletionMessageToolCall(id='call_db29421754a8447590d99d', function=Function(arguments='{"location": "北京"}', name='get_weather'), type='function', index=0)
>>> tool_call result: {'role': 'tool', 'tool_call_id': 'call_db29421754a8447590d99d', 'content': '{"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":24.5,"pressure":1006.0,"humidity":34.0,"windDirection":"西南风","windDirectionDegree":191.0,"windSpeed":2.8,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 15:35"}}'}
>> iterSeq:2
>>> messages: [{'role': 'user', 'content': '北京和广州天气怎么样'}, {'role': 'assistant', 'tool_calls': [ChatCompletionMessageToolCall(id='call_db29421754a8447590d99d', function=Function(arguments='{"location": "北京"}', name='get_weather'), type='function', index=0)], 'content': ''}, {'role': 'tool', 'tool_call_id': 'call_db29421754a8447590d99d', 'content': '{"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":24.5,"pressure":1006.0,"humidity":34.0,"windDirection":"西南风","windDirectionDegree":191.0,"windSpeed":2.8,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 15:35"}}'}]
>>> tool_call: ChatCompletionMessageToolCall(id='call_ae1c03437392444c869cbf', function=Function(arguments='{"location": "广州"}', name='get_weather'), type='function', index=0)
>>> tool_call result: {'role': 'tool', 'tool_call_id': 'call_ae1c03437392444c869cbf', 'content': '{"msg":"success","code":0,"data":{"location":{"id":"59287","name":"广州","path":"中国, 广东, 广州"},"now":{"precipitation":0.0,"temperature":30.4,"pressure":1001.0,"humidity":64.0,"windDirection":"东南风","windDirectionDegree":165.0,"windSpeed":2.2,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 15:35"}}'}
>> iterSeq:3
>>> messages: [{'role': 'user', 'content': '北京和广州天气怎么样'}, {'role': 'assistant', 'tool_calls': [ChatCompletionMessageToolCall(id='call_db29421754a8447590d99d', function=Function(arguments='{"location": "北京"}', name='get_weather'), type='function', index=0)], 'content': ''}, {'role': 'tool', 'tool_call_id': 'call_db29421754a8447590d99d', 'content': '{"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":24.5,"pressure":1006.0,"humidity":34.0,"windDirection":"西南风","windDirectionDegree":191.0,"windSpeed":2.8,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 15:35"}}'}, {'role': 'assistant', 'tool_calls': [ChatCompletionMessageToolCall(id='call_ae1c03437392444c869cbf', function=Function(arguments='{"location": "广州"}', name='get_weather'), type='function', index=0)], 'content': ''}, {'role': 'tool', 'tool_call_id': 'call_ae1c03437392444c869cbf', 'content': '{"msg":"success","code":0,"data":{"location":{"id":"59287","name":"广州","path":"中国, 广东, 广州"},"now":{"precipitation":0.0,"temperature":30.4,"pressure":1001.0,"humidity":64.0,"windDirection":"东南风","windDirectionDegree":165.0,"windSpeed":2.2,"windScale":"微风"},"alarm":[],"lastUpdate":"2025/04/20 15:35"}}'}]
>>> final result:
北京的当前天气状况如下:
- 温度:24.5°C
- 湿度:34%
- 风向:西南风
- 风速:微风 (2.8 m/s)
- 最后更新时间:2025/04/20 15:35
广州的当前天气状况如下:
- 温度:30.4°C
- 湿度:64%
- 风向:东南风
- 风速:微风 (2.2 m/s)
- 最后更新时间:2025/04/20 15:35
END