大模型Agent,必须得会的ReAct技术!


今天,介绍一下ReAct这个技术。想象一下,如果AI能像人一样思考和行动,那会是怎样的体验?ReAct就是这样一种技术,它让AI在模拟环境中表现得更像人类。

LLMs的痛点 首先,得说说LLMs。这些模型经过大量文本数据训练,能预测下一个词。但问题来了,它们容易“幻觉”,也就是编造事实,或者在简单计算上出错。

Prompt Engineering 的魔法 你有没有遇到过问AI一个问题,它答不出来,但换个问法,它就懂了?这就是提示词工程的魔力。通过调整输入,让LLMs给出你想要的答案。这就是所谓的“上下文学习”,包括零样本学习和少样本学习。

ReAct ReAct是一种提示词工程技术,它不仅模仿人类思考问题的方式,还允许AI通过文本动作与环境互动。就像人类用语言表达来帮助自己策划和记忆,但也能通过行动获取更多信息,实现目标。ReAct正是基于这个理念。

大模型Agent,必须得会的ReAct技术!

实验结果:ReAct大显身手 研究人员用ReAct在知识密集型推理任务和决策任务上测试了一番。结果发现,虽然ReAct在某些方面还有待提高,但它在克服幻觉问题上表现出色,并且在决策任务上超越了其他方法。

大模型Agent,必须得会的ReAct技术!

ReAct的意义 ReAct虽然不完美,但它是迈向通用人工智能(AGI)的重要一步。想象一下,如果机器人能够基于熟悉的特征建模陌生环境,并使用该模型创建提示,那它们就能在各种领域自主行动了。

大模型Agent,必须得会的ReAct技术!

RAG技术前沿技术新闻资讯

全网最全RAG评估指南:全面解析RAG评估指标并提供代码示例

2025-3-29 14:22:18

RAG技术前沿技术新闻资讯

【深入浅出RAG】 图形化数据提取工具:LlamaExtract

2025-3-29 16:10:28

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
购物车
优惠劵
搜索