一、多模态感知
-
多模态感知的定义 多模态感知指的是系统能够同时处理来自不同感官的信息,如视觉、听觉和语言输入。这使得智能体Agent能够更全面地理解复杂的环境和任务需求。 -
多模态感知的实现 多模态感知需要使用多种传感器和处理器。例如,摄像头、麦克风和文本输入设备。通过深度学习算法,智能体Agent能够将这些感知数据转换为有用的信息。
二、记忆模块
-
短期记忆 短期记忆类似于人类的大脑在处理当前任务时的临时记忆,用于快速响应和处理即时信息。 -
长短期记忆 长短期记忆结合了短期记忆和长期记忆的优势,用于在完成任务过程中保持和利用重要信息。
三、规划与决策
-
思维链 思维链是智能体Agent在决策过程中,逐步推理和演绎的过程。通过不断地思考和分析,Agent能够得出最优的解决方案。 -
反思与自我批评 反思与自我批评是智能体Agent在任务完成后,回顾和评估自身表现的过程。这一过程能够帮助Agent不断改进和优化自身算法和策略。 -
子目标分解 在复杂任务中,智能体Agent需要将整体目标分解为若干子目标,并逐一实现。这一过程需要Agent具备良好的规划和协调能力。
四、工具模块
-
搜索引擎 搜索引擎为智能Agent提供了强大的信息检索能力,能够快速查找和获取所需的信息。 -
计算器 计算器为智能体Agent提供了复杂计算能力,能够进行各种数学运算和数据处理。 -
代码解释器 代码解释器帮助智能体Agent理解和执行代码,实现自动化任务和编程操作。 -
日历 日历工具帮助智能体Agent管理时间和任务,提高工作效率。
五、行动模块
六、ReAct 核心思想是:推理+操作
1、实现 ReAct 算法的测试函数:使用 LangChain 库和 OpenAI API 来执行推理和操作。
# 以下`SERPAPI_API_KEY`仅为示例,请访问 https://serpapi.com 注册账号并替换为自己的 `API_KEY`(每月100次免费调用)
def react_test():
"""
实现 ReAct 算法的测试函数。
使用 LangChain 库和 OpenAI API 来执行推理和操作。
"""
os.environ["SERPAPI_API_KEY"] = os.getenv('SERPAPI_API_KEY')
# 加载 LangChain 内置的 Tools
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# 实例化 ZERO_SHOT_REACT Agent
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
print(agent.run("谁是莱昂纳多·迪卡普里奥的女朋友?她现在年龄的0.43次方是多少"))
2、测试自我提问与搜索功能的函数:使用 SerpAPI 来执行搜索操作,并结合 LangChain 的工具和LLM进行问答。
def self_ask_with_search_test():"""测试自我提问与搜索功能的函数。使用 SerpAPI 来执行搜索操作,并结合 LangChain 的工具和LLM进行问答。"""os.environ["SERPAPI_API_KEY"] = os.getenv('SERPAPI_API_KEY')# 实例化查询工具search = SerpAPIWrapper()tools = [Tool(name="Intermediate Answer",func=search.run,description="useful for when you need to ask with search",)]# 实例化 SELF_ASK_WITH_SEARCH Agentself_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True,handle_parsing_errors=True)# 实际运行 Agent,查询问题(正确)self_ask_with_search.run("成都举办的大运会是第几届大运会?")
3、测试函数工具的函数:使用 LangChain 和 OpenAI 来执行特定的函数操作。
def get_word_length(word: str) -> int:
"""
计算单词长度的工具函数。
参数:
word: 要计算长度的单词。
返回:
单词的长度。
"""
"""Returns the length of a word."""
return len(word)
tools = [get_word_length]
def function_test():
"""
测试函数工具的函数。
使用 LangChain 和 OpenAI 来执行特定的函数操作。
"""
system_message = SystemMessage(content="你是非常强大的AI助手,但在计算单词长度方面不擅长。")
prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
# 实例化 OpenAIFunctionsAgent
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.run("单词“educa”中有多少个字母?")
4、测试函数记忆功能的函数:使用 LangChain 的记忆机制来保持对话上下文。
def function_memory_test():"""测试函数记忆功能的函数。使用 LangChain 的记忆机制来保持对话上下文。"""system_message = SystemMessage(content="你是非常强大的AI助手,但在计算单词长度方面不擅长。")MEMORY_KEY = "chat_history"prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message,extra_prompt_messages=[MessagesPlaceholder(variable_name=MEMORY_KEY)])memory = ConversationBufferMemory(memory_key=MEMORY_KEY, return_messages=True)agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)# 实例化 OpenAIFunctionsAgentagent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)agent_executor.run("单词“educa”中有多少个字母?")#agent_executor.run("那是一个真实的单词吗?")
5、完整代码
# 加载环境变量
import openai
import os
import tiktoken
# 加载 .env 文件
from dotenv import load_dotenv, find_dotenv
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain
#from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI #直接访问OpenAI的GPT服务
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType,Tool
from langchain.utilities import SerpAPIWrapper
from langchain.schema import SystemMessage
from langchain.agents import OpenAIFunctionsAgent
from langchain.agents import AgentExecutor
from langchain.agents import tool
from langchain.prompts import MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
# 加载环境变量
_ = load_dotenv(find_dotenv())
# 从环境变量中获得你的 OpenAI Key和配置URL
openai.api_key = os.getenv('OPENAI_API_KEY')
openai.api_base = os.getenv('OPENAI_API_URL')
model = os.getenv('OPENAI_API_MODEL')
# 初始化LLM链
llm = ChatOpenAI(model_name=model, temperature=0) #直接访问OpenAI的GPT服务
# ReAct 核心思想是 推理+操作,本示例以` Google Search` 和 `LLM Math` 作为可选操作集合(toolkits),实现 ReAct 功能。
# 以下`SERPAPI_API_KEY`仅为示例,请访问 https://serpapi.com 注册账号并替换为自己的 `API_KEY`(每月100次免费调用)
def react_test():
"""
实现 ReAct 算法的测试函数。
使用 LangChain 库和 OpenAI API 来执行推理和操作。
"""
os.environ["SERPAPI_API_KEY"] = os.getenv('SERPAPI_API_KEY')
# 加载 LangChain 内置的 Tools
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# 实例化 ZERO_SHOT_REACT Agent
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
print(agent.run("谁是莱昂纳多·迪卡普里奥的女朋友?她现在年龄的0.43次方是多少"))
def self_ask_with_search_test():
"""
测试自我提问与搜索功能的函数。
使用 SerpAPI 来执行搜索操作,并结合 LangChain 的工具和LLM进行问答。
"""
os.environ["SERPAPI_API_KEY"] = os.getenv('SERPAPI_API_KEY')
# 实例化查询工具
search = SerpAPIWrapper()
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search",
)
]
# 实例化 SELF_ASK_WITH_SEARCH Agent
self_ask_with_search = initialize_agent(
tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True,handle_parsing_errors=True
)
# 实际运行 Agent,查询问题(正确)
self_ask_with_search.run(
"成都举办的大运会是第几届大运会?"
)
def get_word_length(word: str) -> int:
"""
计算单词长度的工具函数。
参数:
word: 要计算长度的单词。
返回:
单词的长度。
"""
"""Returns the length of a word."""
return len(word)
tools = [get_word_length]
def function_test():
"""
测试函数工具的函数。
使用 LangChain 和 OpenAI 来执行特定的函数操作。
"""
system_message = SystemMessage(content="你是非常强大的AI助手,但在计算单词长度方面不擅长。")
prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
# 实例化 OpenAIFunctionsAgent
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.run("单词“educa”中有多少个字母?")
def function_memory_test():
"""
测试函数记忆功能的函数。
使用 LangChain 的记忆机制来保持对话上下文。
"""
system_message = SystemMessage(content="你是非常强大的AI助手,但在计算单词长度方面不擅长。")
MEMORY_KEY = "chat_history"
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=system_message,
extra_prompt_messages=[MessagesPlaceholder(variable_name=MEMORY_KEY)]
)
memory = ConversationBufferMemory(memory_key=MEMORY_KEY, return_messages=True)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
# 实例化 OpenAIFunctionsAgent
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.run("单词“educa”中有多少个字母?")
#agent_executor.run("那是一个真实的单词吗?")
# python 入口函数
if __name__ == '__main__':
#react_test()
#self_ask_with_search_test()
#function_test()
function_memory_test()