大家好!今天来聊聊如何在RAG应用中更好地利用结构化数据。很多同学可能觉得RAG主要是处理文本文档,但其实结构化数据也能发挥很大作用。我总结了5种实用的方法:
1. 直接存储行数据
最简单直接的方式就是把数据表的每一行当作一个独立的chunk来处理。这种方法特别适合那些单行数据就能表达完整意思的场景,比如交易记录、产品规格表或者客服工单。每一行都有完整的上下文,检索起来效果很好。
2. 存储查询结果
有时候单独一行数据信息不够丰富,这时候可以先跑一个SQL查询,把多个表的数据关联起来,然后对这些查询结果生成向量嵌入。这样得到的chunk包含更丰富的上下文信息,检索效果会更好。
3. 用结构化数据做元数据
这个思路很巧妙!把结构化数据当作非结构化内容的元数据来使用。比如给销售文档加上产品ID、客户分群或者时间范围等标签。这样检索器在排序结果时就有了更丰富的上下文信息,能够更精准地匹配用户需求。
4. 混合搜索
既然有结构化数据,为什么不充分利用呢?可以同时使用语义搜索来处理非结构化文本,用关键词搜索或SQL查询来处理结构化数据,然后把两种结果结合起来。这种混合搜索往往能带来更全面的检索结果。
5. 用结构化数据过滤向量搜索
这个方法在实际应用中特别有用。比如语义搜索返回了100个相关chunk,但你只想要最近一个季度的数据,或者只关心某个特定产品线的信息。这时候就可以用结构化数据来过滤或重新排序,然后再把精选的内容发送给模型。
总结
这5种方法各有特色,可以根据具体业务场景来选择。关键是要认识到结构化数据和非结构化数据不是对立的,而是可以相互补充的。合理运用这些技巧,能让你的RAG应用更加智能和精准。
大家在实际项目中有没有遇到过类似的场景?欢迎在评论区分享你们的经验!